翻訳と辞書
Words near each other
・ Syngamilyta nympha
・ Syngamilyta pehlkei
・ Syngamilyta pretiosalis
・ Syngamilyta samarialis
・ Syngamoneura
・ Syngamus merulae
・ SYNGAP1
・ Syngas
・ Syngas fermentation
・ Syngas to gasoline plus
・ Syngatha
・ Synge (surname)
・ Synge baronets
・ Synge Street CBS
・ Synge's theorem
Synge's world function
・ Synge-Hutchinson baronets
・ Syngelechia
・ Syngeneic stem cell transplantation
・ Syngeneta
・ Syngenic
・ Syngenite
・ Syngenoherpiidae
・ Syngenor
・ Syngenta
・ Syngliocladium
・ Synglochis
・ Syngman Rhee
・ Syngman Rhee (clergy)
・ Syngman Rhee Line


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Synge's world function : ウィキペディア英語版
Synge's world function

In general relativity, Synge's world function is an example of a bitensor, i.e. a tensorial function of pairs of points in the spacetime. Let x, x' be two points in spacetime, and suppose x belongs to a normal convex neighborhood of x so that there exists a unique geodesic \gamma(\lambda) from x to x', up to the affine parameter \lambda. Suppose \gamma(\lambda_0) = x' and \gamma(\lambda_1) = x. Then Synge's world function is defined as:
:\sigma(x,x') = \frac (\lambda_-\lambda_) \int_} g_(z) t^t^ d\lambda
where the integral is evaluated along the geodesic connecting the two points. That is, \sigma(x,x') is half the square of the geodesic length from x to x'. Synge's world function is well-defined, since the integral above is invariant under reparametrization. In particular, for Minkowski spacetime, the Synge's world function simplifies to half the spacetime interval between the two points:
:\sigma(x,x') = \frac \eta_ (x-x')^ (x-x')^
== References ==

http://relativity.livingreviews.org/Articles/lrr-2011-7/fulltext.html

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Synge's world function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.